Development of an Aspergillus Calibrator:

An ASTEC and IAAM Collaboration

Angela M Caliendo, MD, PhD Emory University School of Medicine

Development of a Calibrator

Why is a calibrator needed

 How are standards and calibrators developed

Our plan for an Aspergillus calibrator

Why is a calibrator needed?

Experience with viral load testing

Multicenter Study: CMV Viral Load Tests

• 12 samples

- 2 negatives (CMV seronegative plasma)
- 7 samples dilutions of purified nucleocapsid stock
- 3 clinical samples
 - UL54 mutation (not ganciclovir resistant)
 - UL97 mutation (ganciclovir resistant) and gB mutation
 - No mutation
- 33 laboratories in USA, Canada, Europe

Pang et al. Am J Transplantation. 2009;9:258-268.

Multi-Center CMV Study

CMV Sample Number

ASTEC

Pang et al. Am J Transplantation. 2009;9:258-268

ASPERGILLUS TECHNOLOGY CONSORTIUM

Why don't the values agree?

- Primers and probes may have different efficiencies of amplification
- Extraction method
 Volume of specimen used (sensitivity)
- Use of different calibrators to determine VL
 International standards under development

Why is this important?

 Viral load values are used to determine when to begin therapy and monitor response to therapy

Viral load values don't agree among labs
Determining clinical important cutoffs is difficult

 If you change tests/labs there can be a very big impact on viral load values and clinical decisions

Same test (same run) using the IAAM and Emory calibrators (standard curve)

Sample Number	IAAM (ng/ul)	Emory (ng/ul)	Fold Difference
1	7.7	117.3	15.2
2	1.1	17.7	16.1
3	8 x10 ⁻²	1.5	18.8
4	9 x10 ⁻³	1.8 x 10 ⁻¹	20
5	9.1 x10 ⁻⁴	1.9 x 10 ⁻²	20.1
6	1.2 x 10 ⁻⁴	3.0 x 10 ⁻³	18.8
7	1.2 x10 ⁻⁵	2.9 x10 ⁻⁴	24.2

ASPERGILLUS TECHNOLOGY CONSORTIUM

ASTEC

Fungal Calibrator

- Variability between results from the two tests
- Likely more variability when more laboratories are included
- Develop a material that allows comparison of the performance of various tests
 - LOD, LOQ, reproducibility, linearity

How are International Standards Developed

 WHO International Standards are recognized as the highest order standards

WHO approves these standards, do not make them
 NIBSC in the UK, CBER/FDA, Paul Ehrlich Inst

NIBSC

 Standardization of Genome Amplification Techniques (SoGAT)

The WHO Biological Standards Process

- Call for candidates
- The standard is produced
- Worldwide testing
 - Tests available at the time
- Establishment of a value in IU
- Replenishment is made by comparing with the previous standard.

The WHO Biological Standards Process

- SoGAT started with blood safety
- Developed the IS that are in global use
 HIV-1, HCV, HBV
- Commercial tests are calibrated to the IS
- Various manufacturers provide calibrators that are traceable back to the IS
 Used in clinical laboratories

The WHO Biological Standards Process

- WHO standards are biological standards
- Consensus process for determining the concentration
- SoGAT expanded into clinical diagnostic testing
- International standards used to assess accuracy
 Define the bulls eye on the target

Precision versus Accuracy

HCV International Standard

- High titer HCV-positive donation (plasma, genotype 1)
 - Diluted in cryosupernatant
 - Aliquots made and lyophilized
- Tested in 22 laboratories
 - Commercial tests available at the time
 - Laboratory developed tests
- 4 vials per lab, tested 4 independent assays 1 week apart

HCV International Standard

- Labs assayed ten-fold dilutions of the material
 10⁻¹ to 10⁻⁷
- In 3 subsequent runs eight 0.5 log10 dilutions on either side of the end point were tested
- Number of positive and negative results pooled for each laboratory (all 4 runs)
- Dilution giving 63% positive results has a concentration of 1 copy per reaction
 - Estimate copies/ml

WHO HCV Standard: The First Standard

Fig 1(a) — Sample AA

Saldanha J, Heath A., Lelie N, and the WHO collaborative study group: Establishment of the first international standard for nucleic acid amplification technology assays for HCV RNA. Vox Sang 1999; 76: 149-158

ASTEC

1st HCV International Standard

In addition to limiting dilution some labs provided quantitative results

This brings in bias of their calibrator

Consensus copy number was determined

Results are expressed as mean log₁₀ equivs/ml

	Mean	Range	Number
Endpoint 1	5.01	3.06	25
Endpoint 2 (removing outliers)	5.26	1.16	20
Quantitative	5.82	1.09	8

Copy number established: 10⁵ IU/ml ox Vials contained 50,000 IU

Saldanha J et al. Vox Sang 1999; 76: 149-158

ASTEC

WHO HCV Standard: Testing BB Relative to AA (BB became 2nd Int. STD)

Fig 2(a) Relative Potency – Sample BB

Saldanha J, Heath A., Lelie N, and the WHO collaborative study group: Establishment of the first international standard for nucleic acid amplification technology assays for HCV RNA. Vox Sang 1999; 76: 149-158

ASTEC

ASPERGILLUS TECHNOLOGY CONSORTIUM

IAAM/AsTEC Plan for Aspergillus

Calibrator material

- Purified nucleic acid, rather than biological material
- Ultimately a biological standard is needed

Will not evaluate the extraction method

IAAM purified nucleic acid from cultured A. fumigatis

- Grinding, PK digestion, protein ppt, ETOH ppt, RNAase treat, ETOH ppt
- DNA is further purified on a low melt agarose gel

Stored frozen in aliquots at -70°C

ASPERGILLUS TECHNOLOGY CO

INVASIVE ASPERGILLOSIS ANIMAL MODELS

Limiting Dilution Study

Dilution (x10 ⁸)	Number Tested	% Positive Emory	% Positive IAAM
30	10	100	100
10	10	100	80
3	10	100	80
1	10	90	80
0.3	10	20	50
0.1	10	20	20

ASPERGILLUS TECHNOLOGY CONSORTIUM

ASTEC

Limiting Dilution Study

Probit analysis: 63% positivity rate = 1 c/rxn
 Emory 0.51 x 10⁻⁸ and IAAM 0.90 x 10⁻⁸

5ul/reaction for both, calculate concentration of starting material
 4.0 x 10¹⁰ copies/ml (Emory)
 2.2 x 10¹⁰ copies/ml (IAAM)

15-20 fold difference with calibrators

IAAM/AsTeC Plan for Aspergillus

- Start with a pilot study
- Limiting dilution study and quantification in a few laboratories
- Limiting dilutions studies require a high volume of testing and dilutions will vary for each lab
- Assess results and determine approach
 - 15 to 20 laboratory study

Aspergillus Calibrator

Long term stability study

- Time 0, 1 month, 6 months, 1, 2, 5, years
- Five replicates at each time point

Freeze-thaw stability study

- 0, 1, 2, 3, 5, 10 cycles
- Five replicates per cycle
- Thaw at RT, maintain RT for 20 minutes, refreeze at -70°C for at least 1 hour

Summary

 Goal is to develop a calibrator that can be used to compare the performance characteristics (LOD, LOQ, reproducibility, linear range) of various molecular assays used to detect and quantify aspergillus DNA from clinical samples

